Central limit theorem for constrained Poisson systems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The central limit theorem and Poisson approximation

2 Poisson approximation 6 2.1 A coupling approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Stein’s method for Poisson approximation . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 Independent summands . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 Dependent summands: the local approach . . . . . . . . . . . . . . . . . 10 2.2.3 Size biasing and coup...

متن کامل

Central Limit Theorem for Deterministic Systems

A unified approach to obtaining the central limit theorem for hyperbolic dynamical systems is presented. It builds on previous results for one dimensional maps but it applies to the multidimensional case as well. CONTENT 0. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 2 1. A general probabilistic result . . . . ....

متن کامل

A Poisson Limit Theorem for Toral Automorphisms

We introduce a new method of proving Poisson limit laws in the theory of dynamical systems, which is based on the Chen-Stein method (7, 20]) combined with the analysis of the homoclinic Laplace operator in 11] and some other ho-moclinic considerations. This is accomplished for hyperbolic toral automorphism T and the normalized Haar measure P. Let (G n) n0 be a sequence of measurable sets with n...

متن کامل

Central Limit Theorem in Multitype Branching Random Walk

A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.

متن کامل

Central Limit Theorems for Poisson Hyperplane

We derive a central limit theorem for the number of vertices of convex polytopes induced by stationary Poisson hyperplane processes in Rd . This result generalizes an earlier one proved by Paroux [Adv. in Appl. Probab. 30 (1998) 640–656] for intersection points of motion-invariant Poisson line processes in R2. Our proof is based on Hoeffding’s decomposition of U -statistics which seems to be mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin des Sciences Mathématiques

سال: 2009

ISSN: 0007-4497

DOI: 10.1016/j.bulsci.2008.02.003